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Abstract

A new finite-volume method has been developed for conservative and monotonic transport in multiple dimensions with-
out any sort of dimension splitting to emphasize the space–time integrity of the fluid system. The streamline subgrid inte-
gration (SSI) method is a combination of the semi-Lagrangian and the finite-volume methods with generalized
multidimensional subgrid distributions. Second-order transport schemes are constructed in two dimensions, and their
extensions to three dimensions are also discussed. Spurious divergence is rigorously controlled with Lagrangian control
volumes, monotonicity is well preserved for both compressible and incompressible flows, and positive-definiteness is
always guaranteed. The accuracy and the numerical properties of these schemes are evaluated with both continuous
and discontinuous solutions in flows of rigid motion and incompressible deformation where analytic solutions are avail-
able. Icosahedral geodesic grids are selected to demonstrate the general nature of the SSI method in spherical geometry
that the numerical solutions are virtually not affected by the irregularity of grid structure. We have found that the numer-
ical solutions converge quickly to the analytic solutions, and the SSI second-order schemes are relatively more beneficial
for high-resolution applications.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The development of finite-volume methods for solving fluid-dynamics problems with computers can be
traced back to the original work of Courant et al. [1] as early as in 1952, where the conservation and mono-
tonicity properties for non-divergent transport in one dimension are automatically guaranteed by linear
interpolation following the characteristics of invariants. Godunov [2] emphasized the importance of mono-
tonicity for discontinuous solutions in 1959 that ‘‘The use of schemes which do not have this property is not
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sensible, since the effect of non-monotonicity manifests itself precisely in sharply varying solutions, such as
shock waves.’’ By requiring the monotonicity condition, Godunov proved that the characteristic method of
Courant et al. was the ‘‘best’’ transport scheme for discontinuous solutions in the sense that the underlying
subgrid distributions would remain monotonic if the material under transport were monotonic at the initial
time.

Following Godunov’s methodology [2], van Leer [3] generalized the first-order, piecewise constant subgrid
distributions to the piecewise linear ones for second-order accuracy, and the accuracy was further improved by
Colella and Woodward [4] with piecewise parabolic subgrid distributions. We refer to this type of approach as
the geometric finite-volume methods, in the sense that the subgrid distributions of the material under transport
are explicitly defined for calculating the transport fluxes geometrically. Such a geometric approach provides a
rigorous mechanism for localizing the error of numerical transport; it can be particularly useful for long-term
applications, such as climate simulations, because widely spread errors could otherwise accumulate to produce
unrealistic bias if these errors were not dissipated appropriately. In addition to Godunov’s emphases on
monotonicity for discontinuous solutions, we believe that monotonicity is also important for retaining the
reality of continuous solutions, such as the characteristic wave lengths of mass distribution, and thereby con-
tributing to the convergence of numerical solutions.

Geometric finite-volume methods are often extended to multiple dimensions by integrating subgrid distri-
butions over the domain of dependence implied by the characteristics. Accurate and efficient multidimensional
transport has been achieved by combining one-dimensional (1D) subgrid distributions [2–4] with modifica-
tions that account for multidimensional effects, e.g. the corner contribution of Colella [5], and the cross adjust-
ment of Lin and Rood [6]. Such modifications, however, are not sufficient to fully control the oscillations, and
the use of 1D subgrid distributions can affect the maintenance of monotonicity and the localization of conser-
vation in multiple dimensions. Following van Leer’s proposal [7], Bell et al. [8] extended Colella’s method [5]
for transport in porous media with more general consideration of characteristics and bilinear subgrid distri-
butions. These works are closely related to the method proposed in this article.

As modern computers are emphasizing distributed memory, the efficiency of parallel computation with
explicit domain decomposition has become an essential issue for many types of application. For instance,
the parallel efficiency of most global atmosphere models is still limited by 1D domain decomposition, because
of the use of the traditional longitude–latitude grids where the meridians converge at the poles. Although the
longitude–latitude grids are perfectly orthogonal, and hence convenient for using 1D subgrid distributions, the
pole problem imposes a significant overhead for implementing explicit two-dimensional (2D) domain decom-
position. To fundamentally resolve the issue of parallel efficiency in spherical geometry, it appears desirable to
use quasi-uniform yet non-orthogonal grids, such as the (icosahedral) geodesic grids, where there are no com-
putational poles.

Prior to the capability of performing massively parallel computation, Williamson [9] and Sadourny et al.
[10] demonstrated the advantage of using geodesic grids that the isotropically quasi-uniform resolution can
contribute to the accuracy of modeling large-scale atmospheric motions when the computers became powerful
enough to model the atmosphere globally in 1960s. Recent studies on atmospheric modeling with geodesic
grids include Heikes and Randall [11] and Tomita et al. [12] for reducing grid-related truncation errors,
and Randall et al. [13] have successfully constructed a climate model on this type of grid with excellent parallel
efficiency. Furthermore, Harten et al. [14] have developed high-order essentially non-oscillatory schemes that
allow variable resolution, these schemes may also be useful for modeling with geodesic grids.

We propose to extend the geometric finite-volume methods with multidimensional subgrid distributions,
focusing on the accurate application of non-orthogonal grids for efficient parallel computation in spherical
geometry. We emphasize tracing the invariants in the discrete grid space with Lagrangian control volumes,
which are specified by approximate streamlines with the semi-Lagrangian method of Robert [15] – see also
Staniforth and Côté [16] for a review on the semi-Lagrangian methods. The proposed streamline subgrid inte-
gration (SSI) method is thus a combination of the semi-Lagrangian and the geometric finite-volume methods,
and our first step is to generalize van Leer’s second-order transport schemes [3] to multiple dimensions. To
demonstrate the general nature of the SSI method, we have selected the geodesic grid (Fig. 1) designed by
Tomita et al. [12], where mass centers and spring dynamics are used to reduce grid-related truncation errors.
The accuracy and the numerical properties of the SSI second-order transport schemes are evaluated with both



Fig. 1. Spring-dynamics icosahedral geodesic grid with mass centers. The grid cells are depicted with magenta lines, the mass centers of the
grid cells are connected with black lines, the equator is indicated by the cyan curve, and the north pole is located at the center of the cyan
circle. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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continuous and discontinuous solutions in incompressible flows where analytic solutions are available. In
addition to the solid-body rotation test proposed by Williamson et al. [17], we have extended it to a simple
incompressible deformational flow to better investigate the numerical properties, such as spurious divergence,
monotonicity and positive-definiteness.

2. The streamline subgrid integration method

To construct approximate solutions to the mass conservation law with prescribed velocity, we partition the
fluid continuum into a set of fluid elements, and trace them upstream with Lagrangian control volumes
(Fig. 2). Let V

!
be the prescribed velocity, q the mass density and t is the time coordinate, the mass conserva-

tion law can be written as
P

Q’

Q

P’

Fig. 2. A Lagrangian control volume under transport in the time interval ½t0; t1�. The Lagrangian control volume at the initial time t0 is
enclosed by the gray lines, it coincides with a grid cell (black lines) downstream at a subsequent time t1, with the particles initially at P 0 and
Q 0 arriving at P and Q, respectively.
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oq
ot
þr � ðqV

!Þ ¼ 0: ð1Þ
Given a set of mean values fqig of mass density for the fluid elements contained in the grid cells at the initial
time t0, we seek for a new set of cell-mean density feqig at a subsequent time t1 ¼ t0 þ Dt, as an approximate
solution after a short time of transport. The approximate solution for a longer time is obtained with a
sequence of such small time steps. Integrating Eq. (1) from t0 to t1 over the ith cell Xi, we obtain by Gauss
divergence theorem that
ð~qi � �qiÞ þ
1

Ai

Z t1

t0

I
oXi

ðqV
!� bnÞdldt ¼ 0; ð2Þ
where Ai denotes the area of Xi, dl the length of an infinitesimal segment of the contour oXi enclosing Xi and bn
is the unit vector normal to the contour segment, pointing outward of Xi. Note that the differential
ðqV
!� bnÞdldt refers to the mass flux crossing an infinitesimal contour segment in an instant time, and the issue

is down to the determination of the total mass fluxes crossing the cell edges during the time interval ½t0; t1�.
We first observe that each fluid particle has a constant Lagrangian coordinate following its own trajectory,

as illustrated with the green curves in Fig. 2. If the velocity is independent of time, the trajectories coincide
with the streamlines at any time, and the material is confined by the streamlines during the transport. Thus
for a time-independent velocity field, the material that flows over a cell edge is just the material present in
the upstream area swept by the corresponding edge of the Lagrangian control volume (Fig. 2), and the mass
flux crossing a cell edge within ½t0; t1� is exactly the mass originally contained in the upstream area at t0. It
remains to determine a set of streamlines that represent ½t0; t1�, and to construct detailed subgrid distributions
q from the cell-mean values f�qig, so that the mass flux can be estimated by integrating q over an approximate
upstream area (dashed red lines in Fig. 21).

Let Sij be the upstream area of the jth edge Cij of Xi, blij the unit normal of Cij pointing outward of Sij, bnij

the unit normal of Cij pointing outward of Xi and mi is the total number of edges of Xi. We define the flux
vector F

!
ij and approximate Eq. (2) as
ð~qi � �qiÞ þ
1

Ai

Xmi

j¼1

F
!

ij � bnij ¼ 0; F
!

ij ¼
Z

Sij

qdS

 !blij: ð3Þ
This formulation is exact for steady flows if analytic streamlines are used to specify the upstream areas, and
if analytic subgrid distributions are used to evaluate the upstream integral in Eq. (3). The SSI algorithm thus
consists of three major steps:

(1) Determine the upstream areas Sij with approximate streamlines (Section 3).
(2) Determine the subgrid distributions q with the cell-mean values f�qig (Section 4).
(3) Integrate the subgrid distributions q over the upstream areas Sij (Section 5).

To simplify the algorithm, we approximate the upstream area of a cell edge with a spherical quadrangle
consisting of the cell edge, the two approximate trajectories arriving at the endpoints of the cell edge, and
the upstream edge that connects the two departure points. Fig. 3 illustrates the nature of invariant of the SSI
algorithm. The material in an upstream area on the left of a cell edge (solid green lines) flows to the right
and yields a positive flux (outflow), and an upstream area on the right of a cell edge (dashed green lines)
yields a negative flux (inflow). The material in an overlapped upstream area flows into the grid cell from one
edge and flows out from another, resulting in the cancellation of mass fluxes in Eq. (3), and the net flux is
the sum of a positive area integral (red arrows) over the grid cell (black lines) and a negative one (purple
arrows) over the Lagrangian control volume at the initial time (gray lines). This implies that the mass con-
tained in the Lagrangian control volume at the initial time is equal to the mass contained in the grid cell
after transport.
r interpretation of the references to colour in the text, the reader is referred to the web version of this article.



Fig. 3. The nature of invariant of the SSI algorithm. The material contained in the Lagrangian control volume (gray lines) is transported
to the grid cell (black lines). See text for details.
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Unlike traditional semi-Lagrangian methods that use an approximate trajectory arriving at a cell center as
the characteristic of an invariant, the SSI method defines a characteristic collectively with all the approximate
trajectories of the particles contained in a Lagrangian control volume. Based on the advection equation for
incompressible flows,
dq
dt
¼ oq

ot
þ V
!� rq ¼ 0; ð4Þ
traditional semi-Lagrangian methods determine the value of q at a cell center by interpolation to an upstream
point; the divergence term qr � V

!
is then supplemented to complete the estimation of q for compressible

flows. While the traditional semi-Lagrangian procedure offers a very efficient and quite accurate solution to
the advection problem, it may not be ideal for solving the mass conservation law, because the pointwise deter-
mined values cannot precisely represent the Lagrangian control volumes that define the invariants for the mass
conservation law in the discrete space, and spurious divergence may occur to contaminate the numerical solu-
tion – see Section 3 for more discussion on spurious divergence. In the sense of characteristics, the proposed
SSI method can be considered as a generalization of the traditional semi-Lagrangian methods from the finite-
difference to the finite-volume formulation with the inclusion of the divergence term in the invariants.

3. Integration areas and spurious divergence

The first step of the SSI algorithm is to specify an approximate upstream area for each cell edge with the
upstream positions of the cell corners, i.e., the departure points of the particles arriving at the cell corners. We

determine these upstream positions with the velocity V
!� given at the middle time t� ¼ t0 þ Dt=2, so that the

trajectories can be approximated in a sense of time averaging [15]. We assume that the values of V
!� are given

at both cell centers and corners – if V
!� is given at the cell centers only, we interpolate it to the cell corners.

Following Côté [18], we use 3D Cartesian coordinates with the origin O at the center of the unit sphere, and
constrain the motion of the fluid to the spherical surface.

To determine the upstream position X of a cell corner P1, we first guess X as if the particle were moving
from X to P1 along the geodesic line XP 1 with U

!� ¼ V
!�ðP 1Þ:
OX
�! ¼ OY

�!
jOY
�!j ; OY

�! ¼ OP
�!

1 � U
!�Dt: ð5Þ
Next, we estimate the velocity at the first-guessed X by linear interpolation from the cell centers and cor-
ners, as illustrated in Fig. 4. We divide the cell containing X into spherical triangles with the radii from its
center to corners. Suppose X falls in the spherical triangle DP1P2P3, where P2 is a corner next to P1, and
P3 is the cell center. Let s, s1, s2, s3 be the areas of the spherical triangles DP 1P 2P 3, DXP 2P 3, DXP 3P 1,
DXP 1P 2, respectively, we obtain



P3

P1
s1

s3

s2

P2

Fig. 4. Linear interpolation of velocity to the upstream position (red X) of the cell corner P1. Values of velocity are given at the cell center
P3 and the cell corners P1 and P2. The interpolation weights at P1, P2 and P3 are proportional to the areas of the sub-triangles s1, s2 and s3,
respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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U
!¼ 1

s
fs1 V
!�ðP 1Þ þ s2 V

!�ðP 2Þ þ s3 V
!�ðP 3Þg: ð6Þ
The interpolated velocity, however, is not tangent to the spherical surface in general, and we constrain it to
the spherical surface by subtracting its normal component:
V
!�ðX Þ ¼ U

!� ðU!� OX
�!ÞOX

�!
: ð7Þ
We proceed to use Eq. (5) for a more accurate upstream position with the average velocity
U
!� ¼ 1

2
fV
!�ðX Þ þ V

!�ðP 1Þg: ð8Þ
Note that the average velocity estimated by Eq. (8) does not need to be constrained to the spherical surface,
because the projection in Eq. (5) will lead to the same solution.

The procedure to estimate the average velocity with Eqs. (6)–(8), and hence the upstream position by Eq.
(5), can be applied recursively to improve the accuracy to certain extent. This is the trajectory iteration pro-
cedure used in traditional semi-Lagrangian methods [16], except that we have reformulated it with geometric
elements for geodesic grids.

Pudykiewicz et al. [19] show that the trajectory iteration converges if the velocity field V
!� satisfies the Lips-

chitz condition that the time step Dt be smaller than the reciprocal of the maximum absolute value of the wind
shear in any coordinate direction. Let Dx be the distance between two neighboring cell centers P and Q, Du the
component of DV

!� ¼ V
!�ðP Þ � V

!�ðQÞ along PQ, and Dv the component of DV
!� perpendicular to PQ, the Lips-

chitz condition for geodesic grids can be expressed with the Lipschitz number that
L ¼ max
Du
Dx

���� ����; Dv
Dx

���� ����� �
Dt < 1: ð9Þ
Furthermore, Staniforth and Pudykiewicz [20] find that it is sufficient to use linear interpolation to estimate
the average velocity for the approximate trajectory, and only two iterations are needed to determine the
upstream positions with satisfactory accuracy – as we have observed in our formulation for geodesic grids.
We have also observed that the trajectories are not well converged with only one iteration, and there is virtu-
ally no benefit from the third iteration or more.
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Beyond the stability condition, we consider spurious divergence an important factor for solving the mass
conservation law, because it can lead to the violation of monotonicity and produce spurious gravity waves
to contaminate the solution. The spurious divergence of the SSI method arises from the error in specifying
the Lagrangian control volumes. The first source originates from the approximation to the trajectories by
the streamlines given at the middle time. With the semi-Lagrangian trajectory iteration, the error in determin-
ing the upstream positions of the cell corners is confined within second-order accuracy in time [16]. The second
source comes from the linear approximation to the upstream areas of cell edges with spherical quadrangles,
the error in specifying the Lagrangian control volumes is thus confined within second-order accuracy in space.
We have found the second-order accuracy in both time and space sufficient for controlling the spurious
divergence.

Spurious divergence can be partly examined by testing whether an initially uniform distribution would
remain uniform in an incompressible flow where there is no true divergence – we refer to this test as the
incompressible condition. From the nature of invariant (Fig. 3), we see that the SSI method satisfies the
incompressible condition for rigid motion if analytic upstream positions are used to define the upstream
areas, and if the subgrid distributions q in Eq. (3) are uniform with the same value as that of the initial
condition f�qig. In Section 4, we construct the subgrid distributions from the initial cell-mean values such
that the uniformity of the cell-mean values is inherited by the subgrid distributions. In Section 6, we test
the incompressible condition and show that the semi-Lagrangian trajectory iteration does provide sufficient
accuracy in the sense that the spurious divergence is negligible for both solid-body rotation and incompress-
ible deformation.

4. Subgrid distributions and monotonicity

The second step of the SSI algorithm is to construct detailed subgrid distributions from the cell-mean values
given at the initial time. We generalize van Leer’s piecewise linear subgrid distributions [3] from one to two
dimensions for arbitrary grids. Instead of using line segments for 1D subgrid distributions, we use local planes
to approximate 2D subgrid distributions up to second-order accuracy.

Suppose we wish to determine the subgrid distribution q for a cell X0 centered at P0, which has n neighbor-
ing cells X1; . . . ;Xn, centered at P 1; . . . ; P n, respectively (Fig. 5). We first project P 1; . . . ; P n from the center of
the sphere to the plane tangent to the sphere at P0, and describe the projected points in local Cartesian coor-

dinates with the origin defined at P0, the x-axis in the east, and the y-axis in the north. Given the mean values
�q0; . . . ; �qn for X0; . . . ;Xn, respectively, we seek for a linear function q such that
Fig. 5.
first us
distrib
referre
qðx; yÞ ¼ �q0 þ axþ by; c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
; ð10Þ
. . .
. .

. .

. P2P3

P0
P4 P1

P5 P6

Second-order subgrid distribution (red hexagon) for the cell centered at P0. Mean values (blue lines) at cell centers (black spots) are
ed to calculate the slopes of the auxiliary planes (green triangles), these slopes are then averaged to determine the slopes of the
ution plane that has the mean value (red spot) at P0. (For interpretation of the references to colour in this figure legend, the reader is
d to the web version of this article.)
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where the slopes a and b are to be determined with �q0; . . . ; �qn. Note that the mean values are represented at
the cell centers with second-order accuracy, as we have defined the cell centers with the mass centers of the
cells (Fig. 1). This also ensures the Leibnitz rule that the integral of a subgrid distribution over a cell be
equal to the mass contained in the cell, and thereby enhances the localization of conservation during the
transport.

Let ðxi; yiÞ be the local Cartesian coordinates of Pi, and q0i ¼ �qi � �q0, for i ¼ 1; . . . ; n. We first fit an auxiliary
plane,
f ðx; yÞ ¼ �q0 þ aixþ biy; ð11Þ

ai ¼
yiq
0
j � q0iyj

yixj � xiyj

; bi ¼
q0ixj � xiq0j
yixj � xiyj

; ci ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

i þ b2
i

q
; ð12Þ
for every three neighboring points P0, Pi, Pj, j ¼ modði; nÞ þ 1, such that f ðxi; yiÞ ¼ �qi and f ðxj; yjÞ ¼ �qj, then
take average of the slopes ai and bi to obtain the mean slopes
a ¼ 1

n

Xn

i¼1

ai; b ¼ 1

n

Xn

i¼1

bi; c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
: ð13Þ
Note that the denominators in Eq. (12) do not vanish, and hence ai and bi are well defined, because P0, Pi,
Pj are not common to any geodesic line. Take a ¼ �a and b ¼ �b for Eq. (10), we obtain the basic subgrid dis-

tribution, which is isotropically second-order accurate.
To preserve the monotonicity of the initial condition in the numerical solution, we limit the slopes of the

subgrid distributions with the quasi-monotonic constraint using a ¼ b ¼ 0 in Eq. (10) if c ¼ 0, and
a ¼ c�a; b ¼ c�b; c ¼ minð�c; bĉÞ=�c; ĉ ¼ minðc1; . . . ; cnÞ; if �c > 0; ð14Þ

where b P 0 is a monotonicity parameter to limit the slopes for desired monotonicity. A greater b allows more
accurate slopes but preserves less monotonicity with less diffusion. When b = 0, Eq. (10) reduces to a constant,
and the monotonicity is preserved for any flow if exact Lagrangian control volumes are used for transport.
When b > 0, local extrema are not bounded by their initial cell-mean values, but the subgrid mixing during
the transport provides strong diffusion to suppress the overshoots. For the best compromise between accuracy
and monotonicity, we recommend using b P 1 for compressible flows with the Lipschitz number L < 1/b. This
optimal value of b is suggested by the special case of 1D uniform resolution that the monotonicity in a mono-
tonic region is preserved by the quasi-monotonic constraint when L < 1/b, if the Lagrangian control volumes
are exact.

The monotonicity parameter can also be used to maintain global bounds with optimal accuracy. Let Dn
be the maximum radius of X0, we then have q bounded by bq over X0 if cDn 6 jbq � �q0j, which can be
achieved by the quasi-monotonic constraint with best accuracy when bĉ ¼ jbq � �q0j=Dn. Multiple global
bounds can be maintained simultaneously, and positive-definiteness is achieved when bq ¼ 0 is included as
a global bound. We may use a specific b for each cell to optimize the accuracy while maintaining the global
bounds.

The quasi-monotonic subgrid distributions defined by Eqs. (10)–(14) can be extended to three dimen-
sions easily – all we need is to add vertical terms to Eqs. (10) and (11) and define the slopes in Eq.
(12) with 3D Jacobians. The maintenance of monotonicity and global bounds depends also on the spuri-
ous divergence associated with the specification of the Lagrangian control volumes, which should be com-
mensurate to with a smaller value of b to ensure the desired bounding. For the geodesic grids, we use the
average resolution at the equator (Dxe) in place of the maximum cell radius for maintaining positive-def-
initeness. A good variety of quasi-monotonic transport schemes can be designed for specific purposes by
manipulating the monotonicity parameter. In Section 6, we demonstrate the accuracy and numerical prop-
erties of the SSI 2.2 transport scheme that uses the positive-definite quasi-monotonic subgrid distributions
with (i) b = 2 if ĉ 6 e=2, (ii) b = 1 if e=2 < ĉ 6 e, (iii) b = 0 if e < ĉ, where e ¼ j�q0j=Dxe, and b and ĉ are as
defined in Eq. (14). The version number ‘‘2.2’’ refers to the second-order accuracy with b = 2 for main-
taining the monotonicity in moderately deformational flows (L < 1/2), except when the global bounding
is in effect.
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5. Subgrid integration for transport fluxes

The third step of the SSI algorithm is to calculate the transport fluxes by integrating the subgrid distribu-
tions over the upstream areas, and hence determine the numerical solution. For a geodesic grid, we observe
that each cell edge is surrounded by four cells, and each cell corner is shared by three cells. Defining the grid
configuration for a cell edge as in Fig. 6a, we illustrate the subgrid integration procedure with the example
shown in Fig. 6b.

We first divide the subgrid integration procedure into the 3 · 3 cases shown in Fig. 7 with the upstream
positions (P 0 and Q 0) of the endpoints (P and Q) of the central edge ðPQÞ, according to the grid configuration
defined in Fig. 6a. Suppose P 0 falls in the south cell, and Q 0 falls in the north cell, then we have the case (33),

where P 0Q0 may intersect the cell edges in four distinct ways (subcases) as shown in Fig. 7. The primary cases

are determined by comparing the orientations of the approximate streamlines PP 0 and QQ0 to those of the cell

edges, while the subcases are distinguished by the orientation of the upstream edge P 0Q0 relative to P and Q.
Let O be the center of the sphere, we identify the subcase in Fig. 6b with P on the right and Q on the left of

P 0Q0 when
Fig. 6.
edge (
negativ
legend
rS ¼ ðP 0Q0
��!
� PP 0
�!
Þ � OP
�!

> 0; rN ¼ ðP 0Q0
��!
� QQ0
��!
Þ � OQ
�!

< 0: ð15Þ

Furthermore, we determine the intersections of two geodesic lines by projecting their cross vectors to the

spherical surface, e.g.
OB
�! ¼ OB0

��!
jOB0
��!
j
; OB0
��!
¼ ðOP 0
��!
� OQ0
��!
Þ � ðOP

�!� OQ
�!Þ: ð16Þ
Suppose P 0Q0 intersects the southwest edge at A, the central edge at B, and the northeast edge at C, then the
upstream area of PQ consists of four spherical triangles: DAPP 0 in the south cell, DABP in the west cell, DBCQ
in the east cell, and DCQQ0 in the north cell. Projecting A, B, P to the tangent plane at the west cell center, we
obtain the local Cartesian coordinates ðxA; yAÞ, ðxB; yBÞ, ðxP ; yP Þ and the mean value over DABP by Eq. (10) as
q� ¼ �qW þ
a
3
ðxA þ xB þ xP Þ þ

b
3
ðyA þ yB þ yP Þ; ð17Þ
where �qW is the mean value over the west cell given at the initial time. Similarly, we can determine the mean
values over the other triangles. Let q�1, q�2, q�3, q�4 be the mean values over DAPP 0, DABP , DBCQ, DCQQ0, respec-
tively, and s1, s2, s3, s4 the corresponding areas, we obtain the net flux crossing PQ for the west cell as
F ¼ sgnðrSÞ � ðq�1s1 þ q�2s2Þ þ sgnðrN Þ � ðq�3s3 þ q�4s4Þ; ð18Þ
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Determination of transport fluxes by subgrid integration over upstream areas. (a) Configuration of the grid cells around the central
gray line) where the fluxes cross. (b) A positive flux (green arrow) from the left of the central edge indicates an outflow, and a
e flux (red arrow) from the right refers to an inflow for the west cell. (For interpretation of the references to colour in this figure

, the reader is referred to the web version of this article.)
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(11)

(12) (21)

(22)

(13) (23)

Fig. 7. Subgrid integration cases based on the orientations of approximate streamlines. The first digit of a case number refers to the
orientation of the north streamline, and the second digit corresponds to the south streamline, according to the grid configuration defined in
Fig. 6a. Except for cases (11) and (22), each case has 2–4 subcases determined by the orientation of the upstream edge relative to the
endpoints of the central edge where the fluxes cross.
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where we have executed the inner product in Eq. (3) with F ¼ F
!

ij � bnij. Note that the signs of the fluxes,
sgnðrSÞ and sgnðrN Þ, are implied by the orientation of P 0Q0 relative to P and Q that the mass originally con-
tained in s1 and s2 flows out of the west cell as positive fluxes because these areas are on the left of PQ, while s3

and s4 being on the right of PQ yield inflows as negative fluxes to the west cell (Fig. 6b).
In Fig. 7, we have enumerated all possible cases of subgrid integration under the Lipschitz condition that

the trajectories do not cross, and the assumption that no fluid particle travels farther than the length of any
cell edge within the time step. These cases are sufficient for active transport in a dynamics system where the
stability is subject to the fast-moving gravity waves based on the nodes at the cell centers. For more efficient
applications with larger time steps, however, we will need to consider more subgrid integration cases. We
also note that the SSI algorithm is equivalent to integrating the subgrid distributions over the Lagrangian
control volumes directly (Fig. 3). We choose to integrate the upstream areas of the cell edges rather than the
Lagrangian control volumes, because the subgrid integration involving all upstream edges of a Lagrangian
control volume simultaneously is much more complicated than integrating an upstream area involving only
one upstream edge at a time. We outline the algorithm of the SSI second-order transport schemes as
follows:

(1) Calculate the upstream positions of the cell corners with Eqs. (5)–(8).
(2) Define the subgrid distribution of mass density for each cell with Eqs. (10)–(14).
(3) Determine the subgrid integration case for each cell edge with Fig. 7.
(4) Calculate the transport fluxes with the subgrid integration, e.g. Eqs. (15)–(18).
(5) Calculate the mean mass density after transport with Eq. (3).
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6. Numerical experiments

Following Williamson et al. [17], we test the SSI 2.2 transport scheme with solid-body rotation where the axis
of rotation is variable with respect to the computational grid. We define the Cartesian coordinate system ðx; y; zÞ
with its origin at the center of the sphere, and the spherical coordinate system ðk; hÞwith its polar axis coincident
with the z-axis, and k = 0 in the direction of the x-axis. Rotating these coordinate systems clockwise about the
y-axis by an angle a, we obtain the tilted coordinate systems ðx0; y0; z0Þ and ðk0; h0Þ, as shown in Fig. 8. Like the
Earth’s rotation, the fluid on the spherical surface rotates counterclockwise about the tilted polar axis.

To better investigate the numerical properties, we extend the solid-body rotation test to incompressible
deformation by varying the rotation frequency with the latitude. Considering a solid-body rotation about
the tilted polar axis with the angular frequency x0, we define the angular frequency of the incompressible
deformation as
Fig. 8.
z0-axis
xðh0; tÞ ¼ x0½1� sin2ð2h0Þ sinðx0tÞ�: ð19Þ

Thus we have a rigid motion on each tilted latitude circle – the angular frequency on the tilted equator is

constant (x0), the angular frequencies on other tilted latitude circles vary with time, but they all have the same
period (2p=x0). The velocity field implied by Eq. (19) is therefore incompressible and purely rotational, while
the variation of angular frequency with the latitude (h0) leads to deformation by shearing effect.

Let bi, bj, bk be the unit vectors of the x-, y-, z-axis, respectively, we have the velocity field of the incompress-
ible deformation expressed in Cartesian coordinates as
V
!¼ x½�aybi þ ðaxþ bzÞbj � bybk �; ð20Þ
where a ¼ cosðaÞ and b ¼ sinðaÞ. In terms of the spherical coordinates ðk; hÞ with bk and bh the directional vec-
tors, and R0 the radius of the sphere, the velocity is expressed as
V
!¼ xR0f½a cosðhÞ þ b sinðhÞ cosðkÞ�bk � b sinðkÞbhg: ð21Þ
Given an analytic function f ðk0; h0Þ that defines the initial condition at t = 0, we then have the analytic solu-
tion at t = Dt written as f ðk0 � /; h0Þ, where
/ ¼
Z Dt

0

xdt ¼ x0Dt þ sin2ð2h0Þ½cosðx0DtÞ � 1�: ð22Þ
Z

Y

X

X’

Z’

Y’α

3D Cartesian coordinate systems with the origin at the center of the sphere. The z-axis (Z) passes the geographic poles, and the
(Z 0) is the axis of rotation.
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A geodesic grid consists of ten rhombic regions and two extra grid points for the poles – each region is
specified by the centers of the pentagonal cells at the vertices of the rhombus. Suppose each region con-
tains N · N grid points (cell centers), we then have ð10N 2 þ 2Þ grid points for the entire grid, and the
equator is covered by 5N cells. For the geodesic grid in Fig. 1, we have N = 8 with 40 cells covering
the equator at the average resolution of approximately 1000 km, it is thus referred to as the G8 grid.
For simplicity, we use the average resolution on the equator (Dxe) to represent a geodesic grid, keeping
in mind that it is slightly coarser than the average resolution of the entire grid, e.g. 961 km for the G8
grid. The G16, G32, G64, G128 grids are therefore also referred to with the approximate resolutions
Dxe¼: 500, 250, 125, 63 km, respectively. Following Tomita et al. [12], we modify the geodesic grids with
mass centers and spring dynamics to reduce grid-related truncation errors. The reduction of truncation
errors is mainly due to the truly second-order representation of the data points at the mass centers
(Tomita, personal communication), and partly due to the monotonicity of the grid distribution resulted
from the spring dynamics. In particular, we have used non-linear spring dynamics with unit grid parameter
[12] to maximize the grid uniformity. The largest distance between two grid points is about 25% greater
than the smallest one for such a grid as N approaches to infinity, and the resolution is slightly finer near
the pentagons than away from the pentagons.

As proposed in [17], we test the scheme with the Courant number approximately 0.5 for one revolution. We
limit the time step Dt such that C ¼ jV!jmaxDt=Dxe¼: 0:5, where jV!jmax is the maximum wind speed. Using the
angular frequency x0 ¼ 2p=ð12 daysÞ, and the average radius R0 ¼ 6; 371; 220 m for the Earth, we have

jV!jmax ¼ x0R0¼: 38:6 m=s for the solid-body rotation tests (a1, b1, c1), where we use Dt = 216, 108, 54, 27,
13.5 min for the G8, G16, G32, G64, G128 grid, respectively. While for the incompressible deformation tests

(a2, b2, c2), we have jV!jmax¼
:

59:6 m=s occurred at h0 ¼: 35� when x0t ¼ 3p=2, so we use Dt ¼ 144, 72, 36, 18,
9 min for the G8, G16, G32, G64, G128 grid, respectively.

Note that the Lipschitz number is a measure of both shearing and compressing effects, while the shearing
effect does not necessarily lead to deformation. For the solid-body rotation on the G8 grid with Dt ¼ 216 min,
we actually have the maximum Lipschitz number Lmax¼: 0:08 occurred at the poles of rotation, which is purely
due to the variation of rotation curvature. While for the incompressible deformation on the G8 grid with
Dt = 144 min, we have Lmax¼: 0:12 at h0 ¼: 60� when x0t ¼ 3p=2, which is due to both curvature and frequency
variation. Since the incompressible deformation results from the frequency variation, we have the maximum
deformation occurred at h0 ¼ 22:5� with L¼: 0:11 when x0 t = 0, where the contribution of the curvature var-
iation to the Lipschitz number is an order smaller than that of the frequency variation. We also note that the
Lipschitz number depends on the time step but not the resolution, and fixing the Courant number leads to the
decreasing of the Lipschitz number with increasing resolution. For instance, Lmax¼: 0:06 for the incompressible
deformation on the G16 grid with Dt = 72 min.

For all numerical experiments presented in this article, we define the initial conditions at the cell centers
pointwise, and these pointwise values are taken as the mean values over the corresponding cells to start
the time integration. All velocity fields are prescribed at both the cell centers and corners at the middle of
the time steps, and two trajectory iterations are used to determine the upstream positions of the cell cor-
ners, unless otherwise mentioned. We measure the accuracy of numerical solutions with the normalized
errors:
‘1 ¼
P
jfi � gijAiP
jfijAi

; ‘2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
jfi � gij

2Ai

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
jfij2Ai

q ; ‘1 ¼
maxðjfi � gijÞ

maxðjfijÞ
; ð23Þ
where the summation and the maximum functions are evaluated over all grid cells, fi is the analytic solution, gi

the numerical solution, and Ai the area of the ith grid cell.

6.1. Spurious divergence of solid-body rotation

With the solid-body rotation of a constant field ð�qi ¼ 1Þ, we test the incompressible condition to examine
the spurious divergence of the SSI method. Because of the isotropic property of geodesic grids, the results are
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similar for different rotation angles, and we choose a = 0 to better illustrate the influence of the grid structure
for this test.

Table 1 summarizes the errors after one revolution, which are purely due to the spurious divergence asso-
ciated with the specification of the Lagrangian control volumes. Significant error is accumulated if the tra-
jectories are not iterated to achieve second-order accuracy in time, even though the time steps are small with
the Courant number only 0.5 and the Lipschitz number only 0.08 on the G8 grid. The error accumulation is
a consequence of the persistent spurious convergence toward the poles due to the use of tangential velocity.
The spurious divergence is, however, virtually eliminated when the trajectories are iterated for only two
times, as illustrated in Fig. 9. This shows the importance of the accuracy in determining the upstream posi-
tions. We also note that the errors due to spurious divergence decrease rapidly with increasing resolution,
and they are negligible compared to those shown in Tables 3 and 7 where the initial conditions are not
uniform.

6.2. Spurious divergence of incompressible deformation

To further investigate the spurious divergence of the SSI method, we test the incompressible condition with
the incompressible deformation flow. In addition to the error in upstream positions, Lagrangian control vol-
umes are now twisted, and the linear approximation to the Lagrangian control volumes adds to the error in
Table 1
Statistics of solid-body rotation of a constant field with a = 0 after one revolution, using different resolutions and different numbers of
trajectory iteration

Grid Iterations Minimum Maximum ‘1 Error ‘2 Error ‘1 Error

G8 0 0.78559231 1.62948071 0.18633413 0.22663439 0.62948071
G8 2 0.99964556 1.00014065 0.00008760 0.00010708 0.00035444
G16 2 0.99995537 1.00002019 0.00001226 0.00001466 0.00004463
G32 2 0.99999428 1.00000419 0.00000161 0.00000190 0.00000572
G64 2 0.99999892 1.00000105 0.00000020 0.00000024 0.00000108
G128 2 0.99999925 1.00000026 0.00000003 0.00000003 0.00000075

Fig. 9. Solid-body rotation of a constant field with a = 0 after one revolution on G8 grid (Dxe¼: 1000 km), using 0 and 2 trajectory
iterations in (a) and (b), respectively. The analytic solution has the constant value 1, and the numerical solutions are depicted with both
colors and black contours from 0.8 to 1.6 by 0.1. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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divergence. Table 2 summarizes the errors for the incompressible deformation of a constant field with unit
value after one revolution, which are in general greater than those in Table 1 for solid-body rotation.
Fig. 10 shows the convergence of trajectory iteration for the deformation flow. Note that the errors due to
spurious divergence decrease rapidly with increasing resolution, and they are negligible compared to those
shown in Tables 5 and 8 where the initial conditions are not uniform.

6.3. Solid-body rotation of a cosine bell

For continuous solutions, we test the solid-body rotation of a cosine bell as proposed in [17]. We define the
initial condition with the cell-mean values as
Fig. 10
traject
with b
referre

Table
Statist
numbe

Grid

G8
G8
G16
G32
G64
G128
�qi ¼
½1þ cosðpri=RÞ�=2; ri 6 R;

0; ri > R;

�
ð24Þ
where R ¼ R0=3 is the radius of the cosine bell, and ri the distance between the ith cell center and the cosine bell
center, which is initially placed at ðk; hÞ ¼ ð3p=2; 0Þ. The results are similar for different rotation angles on the
geodesic grids, and we present those with a = p/2 for transport over the poles where the grid is divided into 10
regions.

Table 3 summarizes the errors of the solid-body rotation of the cosine bell with a = p/2 after one revolu-
tion, and Table 4 shows the convergence rates in various resolution intervals. Fig. 11 shows the simulations
. Incompressible deformation of a constant field with a = 0 after one revolution on G8 grid ðDxe¼: 1000 kmÞ, using 0 and 2
ory iterations in (a) and (b), respectively. The analytic solution has the constant value 1, and the numerical solutions are depicted
oth colors and black contours from 0.9 to 1.4 by 0.1. (For interpretation of the references to colour in this figure legend, the reader is
d to the web version of this article.)

2
ics of incompressible deformation of a constant field with a = 0 after one revolution, using different resolutions and different
rs of trajectory iteration

Iterations Minimum Maximum ‘1 Error ‘2 Error ‘1 Error

0 0.84137654 1.40067367 0.17739796 0.20447154 0.40067367
2 0.99874870 1.00056522 0.00025555 0.00036390 0.00125130
2 0.99956088 1.00050608 0.00011901 0.00017348 0.00050608
2 0.99979449 1.00020834 0.00004116 0.00006844 0.00020834
2 0.99993794 1.00006051 0.00001073 0.00001899 0.00006206
2 0.99998400 1.00001574 0.00000269 0.00000483 0.00001600



Table 4
Convergence rates of the solid-body rotation of the cosine bell in various resolution intervals

Resolution marching 500! 250 km 250! 125 km 125! 63 km

‘1 Convergence rate 2.24 2.56 2.45
‘2 Convergence rate 2.09 2.49 2.17

Fig. 11. Solid-body rotation of the cosine bell with a = p/2 after one revolution at the resolution Dxe approximately (a) 500 km,
(b) 250 km, (c) 125 km and (d) 63 km. The numerical solutions are depicted with both colors and red contours, and the analytic solutions
are depicted with black contours from 0.1 to 0.9 by 0.1. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Table 3
Statistics of the solid-body rotation of the cosine bell with a = p/2 after one revolution, using different resolutions (Dxe)

Grid Resolution (km) Minimum Maximum ‘1 Error ‘2 Error ‘1 Error

G16 �500 0 0.510 0.555877 0.411567 0.489675
G32 �250 0 0.848 0.117547 0.096496 0.151527
G64 �125 0 0.956 0.019945 0.017232 0.044212
G128 �63 0 0.986 0.003650 0.003829 0.014092
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Fig. 12. Profiles of the cosine-bell advection shown in Fig. 11 at k ¼ 3p=2.
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with different resolutions, and Fig. 12 shows the profiles along the meridian at k ¼ 3p=2, in which direction the
cosine bell is transported and the numerical solutions are most deteriorated. We see that the numerical solu-
tion converges quickly to the analytic solution with increasing resolution, and the phase speed is almost perfect
for all resolutions. The monotonicity is well preserved in all directions, the positive-definiteness is truly
achieved, and the shapes of the contours are well maintained with little influence of the grid structure. The
amplitudes are, however, not well maintained for low resolutions, because of the low-order spatial accuracy
that yields much stronger diffusion for high wave numbers (low resolutions) than for low wave numbers (high
resolutions).

Following [11,12], we investigate the convergence of numerical solutions on the geodesic grids in logarith-
mic scale for each doubling of resolution. For the total error e in a fixed total integration time, we define the
convergence rate as �D logðeÞ= logð2Þ, which corresponds to the actual order of accuracy in a numerical exper-
iment. We evaluate the convergence rates with the ‘1 and ‘2 errors but not the ‘1 error, because the ‘1 error is
not a mean measure. From Table 4, we observe that the convergence rates of the SSI 2.2 transport scheme are
actually greater than its formal spatial order of accuracy (2), because it is also second-order accurate in time.
We also note that the convergence of the SSI transport is accelerated at high resolutions, especially with the ‘1
Fig. 13. Analytic solution of the incompressible deformation of the cosine bell with a = p/2 after (a) 0 or 1 revolution, (b) 1/4 or 3/4
revolution and (c) 1/2 revolution.



1648 K.-S. Yeh / Journal of Computational Physics 225 (2007) 1632–1652
measure that is not self-weighted. The fast convergence and the non-linear diffusion indicates that the SSI 2.2
transport is relatively more beneficial for high-resolution applications.

6.4. Incompressible deformation of a cosine bell

For a more realistic experiment, we test the incompressible deformation of the cosine bell. Fig. 13 shows the
analytic solution, where the gradients are intensified in the front-left and front-right during the first half rev-
olution, and the cosine bell is resumed during the second half revolution. Although the Lipschitz numbers are
very small for high resolutions with the Courant number fixed at 0.5, the total effect of deformation is rather
significant.

Table 5 summarizes the errors of the incompressible deformation of the cosine bell with a = p/2 after one
revolution, Table 6 shows the convergence rates in various resolution intervals, and Fig. 14 shows the simu-
lations with different resolutions. The errors of the incompressible deformation are greater than those of the
solid-body rotation (Table 3), and the convergence rates of the incompressible deformation are smaller than
those of the solid-body rotation (Table 4). These are due to the intensified gradients in the front, and the pro-
longed distribution in the rear. The intensified gradients increase the wave numbers of the mass distribution
with respect to the resolution, causing stronger diffusion from the numerical approximation, and the pro-
longed distribution enhances the spreading of the errors. The phase speed, the monotonicity, and the posi-
tive-definiteness are still well maintained in the deformation flow for all resolutions. The numerical solution
has simulated the analytic solution very well at the 63-km resolution, with the convergence continuously accel-
erated at higher resolutions, confirming that the SSI 2.2 transport scheme is relatively more beneficial for high-
resolution applications.

6.5. Solid-body rotation of a cylinder

To better investigate the maintenance of monotonicity and global bounds, we also test the discontinuous
solutions with the cylinder as the initial condition:
Table
Statist

Grid

G16
G32
G64
G128

Table
Conve

Resolu

‘1 Con
‘2 Con
�qi ¼
1; ri 6 R;

0; ri > R;

�
ð25Þ
where R ¼ R0=3 is the radius of the cylinder, and ri the distance between the ith cell center and the cyl-
inder center, which is initially placed at ðk; hÞ ¼ ð3p=2; 0Þ. Because higher resolutions are required for sim-
ulating discontinuous solutions, we test the transport of the cylinder with the 125-km and 63-km
resolutions only.
5
ics of the incompressible deformation of the cosine bell with a = p/2 after one revolution, using different resolutions (Dxe)

Resolution (km) Minimum Maximum ‘1 Error ‘2 Error ‘1 Error

�500 0 0.407 0.801711 0.541144 0.592834
�250 0 0.785 0.324285 0.236165 0.215215
�125 0 0.945 0.093546 0.075869 0.070560
�63 0 0.982 0.020832 0.018013 0.019232

6
rgence rates of the incompressible deformation of the cosine bell in various resolution intervals

tion Marching 500! 250 km 250! 125 km 125! 63 km

vergence rate 1.31 1.79 2.17
vergence rate 1.20 1.64 2.07



Fig. 14. Incompressible deformation of a cosine bell with a = p/2 after one revolution at the resolution Dxe approximately (a) 500 km,
(b) 250 km, (c) 125 km and (d) 63 km. The numerical solutions are depicted with both colors and red contours, and the analytic solutions
are depicted with black contours from 0.1 to 0.9 by 0.1. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Table 7
Statistics of the solid-body rotation of the cylinder with a = p/2 after one revolution, using different resolutions (Dxe)

Grid Resolution (km) Minimum Maximum ‘1 Error ‘2 Error ‘1 Error

G64 �125 0 1.0000003 0.190825 0.240614 0.528133
G128 �63 0 1.0000002 0.111653 0.184653 0.530736
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Table 7 summarizes the errors of the solid-body rotation of the cylinder with a = p/2 after one revolu-
tion, Fig. 15 shows the simulations with different resolutions, and Fig. 16 shows the profiles along the
meridian at k ¼ 3p=2. The monotonicity and the shape of the discontinuous solutions are maintained as
well as those of the continuous ones. The positive-definiteness is firmly achieved by global bounding with
local conservation (Section 4), and the overshoots due to the quasi-monotonic constraint are negligible,
indicating that the SSI 2.2 is a very good compromise between accuracy and monotonicity. The numerical
solution has, however, not yet quite converged to the analytic solution at the 63-km resolution, because the
spatial accuracy of the SSI 2.2 transport has reduced to only first-order for maintaining the monotonicity
near the sharp gradients.



Fig. 15. Solid-body rotation of the cylinder with a = p/2 after one revolution at the resolution Dxe approximately (a) 125 km and
(b) 63 km. The analytic solutions have the value 1 inside and 0 outside the black circles, and the numerical solutions are depicted with both
colors and red contours from 0.1 to 0.9 by 0.1. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

Fig. 16. Profiles of the cylinder advection shown in Fig. 15 at k ¼ 3p=2.
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6.6. Incompressible deformation of a cylinder

To further demonstrate the capability of the SSI method in localizing the errors, we also test the incom-
pressible deformation of the cylinder with a = p/2. Table 8 summarizes the errors after one revolution, and
Fig. 17 shows the simulations with different resolutions. Because the discontinuities cannot be resolved in
the discrete grid space, the sharp gradients are quickly diffused. The diffused gradients are, however,
strengthened by the deformation flow in the front and weakened in the rear, causing stronger diffusion
in the front during the first half revolution. The distortion is thus focused in the front due to the difficulty
in resuming the strengthened gradients in the second half revolution. We see that the errors are highly local-
ized, as the solutions in the rear are not contaminated by the greater errors produced in the front. The aver-
age phase speed is still very accurate, the monotonicity and the positive-definiteness are still well maintained
with negligible overshoots, yet it requires a much higher resolution for the numerical solution to converge to
the analytic one.
Table 8
Statistics of the incompressible deformation of the cylinder with a = p/2 after one revolution, using different resolutions (Dxe)

Grid Resolution (km) Minimum Maximum ‘1 Error ‘2 Error ‘1 Error

G64 �125 0 1.000006 0.291320 0.303304 0.711771
G128 �63 0 1.000002 0.168895 0.229042 0.672656



Fig. 17. Incompressible deformation of the cylinder with a = p/2 after one revolution at the resolution Dxe approximately (a) 125 km and
(b) 63 km. The analytic solutions have the value 1 inside and 0 outside the black circles, and the numerical solutions are depicted with both
colors and red contours from 0.1 to 0.9 by 0.1. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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7. Summary and conclusions

A new finite-volume method is proposed for conservative and monotonic transport in multiple dimensions.
Lagrangian control volumes are used to trace the invariants in the discrete grid space, and multidimensional
subgrid distributions are used to calculate the transport fluxes.

A monotonicity parameter is introduced to optimize the accuracy while maintaining the monotonicity and
the global bounds in compressible flows. The monotonicity parameter also provides a means to adjust the
amount of diffusion to stabilize the numerical integration. A good variety of quasi-monotonic transport
schemes can be conveniently designed for specific purposes by manipulating the monotonicity parameter.
We have demonstrated the use of the monotonicity parameter with the SSI 2.2 scheme, which preserves the
monotonicity in moderately deformational flows, and guarantees the positive-definiteness in any flows as a
lower bound. The SSI 2.2, however, does not constrain the upper bound strictly. Instead, the monotonicity
parameter of two is used to optimize the accuracy while providing sufficient diffusion to suppress the over-
shoots of local maxima to a negligible level. We have found that the numerical solutions converge quickly
to the analytic solutions, and the SSI 2.2 is relatively more beneficial for high-resolution applications.

Geodesic grids are used to demonstrate the general geometric nature of the SSI method that the numerical
solutions are virtually not affected by the irregularity of grid structure. The SSI method is designed for appli-
cations on arbitrary grids, in order to provide the ultimate flexibility for explicit domain decomposition to fully
explore the power of modern distributed-memory computers with optimal parallel efficiency. In the beginning
phase of the development, we have focused on the application of active transport in a dynamics model that uses
explicit time discretizations on quasi-uniform grids for efficient explicit domain decomposition. The time step
required by such active transport is much smaller than what is generously allowed by the Lipschitz condition
associated with the semi-Lagrangian trajectory iteration. The extension of the SSI method to larger time steps
for other applications, such as tracer transport, will be presented in subsequent papers.
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[18] J. Côté, A Lagrange multiplier approach for the metric terms of semi-Lagrangian models on the sphere, Q. J. R. Meteorol. Soc. 114

(1988) 1347–1352.
[19] J. Pudykiewicz, R. Benoit, A. Staniforth, Preliminary results from a partial LRTAP model based on an existing meteorological

forecast model, Atmos. Ocean 23 (1985) 267–303.
[20] A. Staniforth, J. Pudykiewicz, Reply to comments on and addenda to ‘‘Some properties and comparative performance of the semi-

Lagrangian method of Robert in the solution of the advection–diffusion equation’’, Atmos. Ocean 23 (1985) 195–200.


	The streamline subgrid integration method: I. Quasi-monotonic second-order transport schemes
	Introduction
	The streamline subgrid integration method
	Integration areas and spurious divergence
	Subgrid distributions and monotonicity
	Subgrid integration for transport fluxes
	Numerical experiments
	Spurious divergence of solid-body rotation
	Spurious divergence of incompressible deformation
	Solid-body rotation of a cosine bell
	Incompressible deformation of a cosine bell
	Solid-body rotation of a cylinder
	Incompressible deformation of a cylinder

	Summary and conclusions
	Acknowledgments
	References


